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Abstract. We extend the renormalization analysis for period doubling in unimodal maps to the
case of asymmetric critical points. Universal scaling phenomena are governed by period-two
points of a renormalization operator.

1. Introduction

We are interested in exploring the universality classes of the period-doubling phenomenon
as first expounded by Feigenbaum [9, 10] (see also [5]). The universality of the remarkable
scaling phenomena observed in unimodal maps of the interval are explained in terms
of a fixed point of the operatof (x) — o« 1f(f(ax)), wherea = f(1). Following
Feigenbaum’s initial discoveries, a computer-assisted proof of the existence of the fixed
point was given by Lanford [13], and since then various proofs of both existence and
properties of the fixed point have been given [3, 4, 8, 7].

There has been much numerical and analytic work on how the scaling phenomena
depend on the degree of the critical point. For a review of results see [16] and references
therein. In particular the (computer-assisted) rigorous results of Eckmann and Wittwer
[7] for the large-degree limit are noteworthy. The degree is seen to be a universality
class parameter, by which we mean that different degrees correspond to different universal
scalings.

In this paper we study unimodal maps of the interval possessing deégmitécal points,
but with differing left- and right-hand limits of théth derivative. The prototype map we
have in mind is

fr(x) =1—rqlx) x <0

1.1
fr(x) =1— rplx| x>0 5

fx) =
with d > 1. The subscriptd. and R stand for ‘left’ and ‘right’, andi1, A, > 0. Early
studies of period doubling in maps of this form were conducted by Arnebad [1] (see
also [6, 15]). As observed in [1], the rati@, of the coefficientsk; and A, is another
universality class parameter.
Feigenbaum’s renormalization operator is

Tr:f f (1.2)
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defined by

fe) =a tff(ax) (1.3)
with

«=f(1) <0 (1.4)

The natural generalization of this operator to the type of map we consider is the map on
pairs of functions.

T:(fr. fo) = (fr. fr) (1.5)
defined by

fLx) =a "t fr frax) (1.6a)

fr@) = o fr frlax) (1.60)
with

o= fr(1) <O. 1.7)

The analysis of section 2 below shows that it is natural to look for fixed points cfebend
iterate of 7. We see in section 3 that indeed the paramgtgoverns the universal scaling
features. We expect there to be a line of period-two points parametrizedtbsough the
Feigenbaum fixed point, each point on the line corresponding to a universality class with
its own universal constants. In section 4 we present numerical calculations of the relevant
scaling exponents which support this conclusion.

2. Mixed degree maps

It is illustrative to consider not just the situation in which the maps join up with different
left and rightdth derivatives at the critical point as in equation (1.1), but one where the
degree of the critical point may be different on the left- and right-hand sides. The prototype
would now be

i) =1=hx™  x<0
fr(x) = 1—hglx|® x>0
with di, d» > 1. For simplicity of the expressions we have assumed in what follows that
the degrees are even, but this is not essential.

We consider the formal effect of the renormalization operd@tatefined by (1.5) on the
more general map with

fx) = (2.1)

frx) =14 ax'™ (2.29)
i=1

fr(x) =1+ bix'® (2.2b)
i=1

in whichay, by < 0. Our aim is to find relations between the coefficients and scaling factors
that are necessary fdr to have fixed and period-two points.
We have

o0 00 idy

frx) = a1<1+ Zbi<1+ ijafdzﬂdz) ) (2.39)
i=1 j=1
o0 00 idy

frx) = a_1<1 + Zbi (1 + Zajajdlxjd1> ) (2.30)
i=1 j=1
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We now seek to write these in the form

fre)y =1+ ax'® (2.40)
=1

fr(x) =1+ byx'® (2.40)
(=1

Note that the degrees swop from the left- to right-hand side and vice versa. This leads us
to expect that the second iteraté of the renormalization operator will govern any scaling
behaviour.

Let us considerfy first. We have

o0 idy
frx)=at+at Zbi Z (ld2> ( Za iy Jdl) (2.5)

k=0

+orli Z <ld2>(2a iy fd1>k (2.6)

k= OA I:k+d§ ]

on swopping the first two summations, wheté means that wheh = 0 there isna =0
term. This is

00 00 k o] .
fr)=at+a Y (Zajafdlxm) Z’ b; (’Zz) (2.7)
j=1

00 0 k
et e (fr@ - D ety k_lu( > e’ dl’“jdl) R (2:8)

=1 \j=1

where we have used the fact that #tte derivative of f, (k) , satisfies

k - idy
k! ()( V= 4 [;4:2-1] ( k )bi' @9

Continuing (recalling thatr = fR(l)) we thus have

k
frax)=14a7t Z NI eh) < > a-(xjdlxjd1> (2.10)

j=1

=1+at Z i (k)(l) Z ( Z a,ai, - a[k>a€dlxzdl (2.11)

lil=

where the summatio} " _, ai,a;, - . - a;, means the sum of the product bfterms with
indices adding td. We use the notatiofi| =iy + iz + -+ - + iy.
We now swop order of summation again to obtain

fR x)=14a? Z P Z (k)(1)< Z ai,ai, - A) (2.12)

lil=
which is our desired expressmn (B)4 For instance, the coefficient aft is

=ao ta® Z 0 (k)(1)< Z ai,aj, . ) (2.13)

lil=
frDay (2.14)
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whilst
by = " M(fr(Daz + § fr(Dad). (2.15)

Note that the expression for eashinvolves everyb; (but only a finite number of the;).
In general we have

b — gl 12 = (k>(1)<||2: aia;, - ) (2.16)
The corresponding expression (@4or f;(x) is

frax)=1+a? Za‘dz tdy Z o <">(1)< Z bib, . . k). (2.17)

lil=

We have
5
- _ 1
=o'ty Ef,g“(l)( Z bibi, ... b,-k). (2.18)
k=1 li|=¢
In particular we have
ay = a® £, (1)by. (2.19)

For there to be a fixed point df we clearly needd; = d,. With dy = d,, using
equations (2.14) and (2.19), the conditighs= a; andb, = by imply thatai /b, = b1/a1
and soa; = b; since they are of the same sign. By induction it follows that= b, for
all £. This is a consequence of equations (2.16) and (2.18).

We conclude that any fixed points @f must be symmetric, i.e. havg = fk.

We now consider period-two points @f. A second application of’ gives a new pair

(fL, fR) given by

fL(x) =a " fr fr@x) (2.20n)

Sr@x) =a * fr fr@x) (2.2()
where

& = fr(D). (2.21)
We write these in the form

f) =1+ > axih (2.220)

=1
Fe) =143 bxi (2.220)

j=1
and we have

Clj _Ol]dl 12]{' (k)( )(Zgill;iz"'

lil=j

-1 Z i foa )( >, .. .a,-k> (2.2%)

lil=j

S

i ) (2.23%)

S
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where

&= frl)=1+) b (2.24)
and

12w ST

— 1= b;. 2.25

L) ‘[“Z“]<k) (2.25)

i= #

In order to study the period-two problem f@r we impose the conditionéj =b; and
a; = aj. The first term { = 1) gives

ay =& fr(Dby (2.26)

by = & f(Day (2.260)
where we have, by (2.14) and (2.19),

ay = a7 fr(Dby (2.273)

by = a1 fr(D)ay. (2.27)
Thus the equations

ay = a1 fi (Db = ay (2.283)

by = & fy(Vay = by (2.28)
become

a7 frDa i (Day = ay (2.2%)

& fr(Da®t fr (Vb1 = by (2.2%)
which give

@) fr) fr(D) =1 (2.3()

(@)™t fr(D fr(D) = L. (2.3)
Whend, # d, we deduce from these last two equations that

ao = 1. (2.31)

We now consider briefly the question of whether period-two points can exist tgrd,.
We shall return to the casf = d, in the next section.
The period-two equations can be written as

fr(x) = (@&) " fr f1 fr f(dx) (2.32)

fr(x) = (@&) " fr 1 fr fr () (2.33)
and in particular, sincéd; # d,, we have by (2.31)

SR = frfLfrfr(x) (2.34)

which can only be satisfied ifx f. fr is the identity function forx close to 1. Now for
unimodal maps 0 is the only point that maps to 1, andfsgz(1) = 0. Differentiating
at 1 gives(fr fr fr) (1) = 0 which contradictsf f; fr being the identity function. Thus
no analytic period-two points can exist.

This leaves open the question of what determines the metric bifurcation structure of
families of unimodal maps withl; # d,. One can draw bifurcation diagrams for our
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maps (2.1) wheni; # d,, and topologically all is as in the standard Feigenbaum case.
However, as indicated by the numerical results of Jensen and Ma [11], there does not seem
to be geometric scaling of Feigenbaum type. The fact that there are no fixed or period-two
points of T supports these findings.

3. An invariant modulus for the d; = d, case

Equations (2.14) and (2.19) show us that

a, by

== s (3.1)
and hence

a®aid; = a®bqb;. (3.2)

Thus, whend; = d> = d we deduce that

a1y = biby (3.3)
or equivalently

Z—i - Z—i. (3.4)
We thus have an ‘invariant modulus’

w=g (3.5)

that inverts under one renormalization and then reverts to its original value on a second
renormalization. This is similar to the invariant modulus introduced in [14] (see also [12]).
If we now consider the (second iterate) fixed point equation we find that the next terms

satisfy
2
92 _ () _ 2
by (bl) s 9
and
S 2 e @) ,;’(1))
f’*(l)_af(&a)w—lf,g(ly <a2(1 (@) o) (3.7)

Much more is true however. Using (2.16), (2.18) and (2.23), a straightforward induction
argument shows that

dy ¢

— = 3.8
b M (3.8)
for all £. We thus have
fr@) =14 bip'x =14+ bi(uMx) = fr(u'x) (3.9)
i=1 i=1
fr(x) =1+ bix'. (3.10)
i=1

We see that the fixed point pair can be expressed solely in terms of the single fufigtion
and the invariant modulug. Note that whenu = 1 we havef; = fr as expected.
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Itis clear from the preceding arguments that there is a simple symmetry between the two
values of the modulug and ¥/ i as far as the scaling constantanda are concerned—they
are interchanged. Their product is consequently the same for paramesec 1/ ..

In the standard degre€ Feigenbaum situation (1.2), with corresponding fixed point
equation

f) =a ff(ax) (3.11)
wherea = f(1), on proposing the series solution

f) =1+ aix™ (3.12)

i=1

we deduce that

[ =ao* (3.13)
and

. 2a5(1 — a?)
= W- (3.14)

Our expressions above ((3.1), (3.7)) simplify to these when 1.

As a further indication of the existence of period-two points7ofwe consider the
linearization of the operatdf at the Feigenbaum fixed point.

Let (f., fr) be the degreé fixed point of 7', and letL denote the derivative®( 1., fr)
at the fixed point. LetC denote the linear map (g, gr) = g1 — gr and (X, X) be
an eigenvector of. satisfyingC(X;, Xz)(0) = 0, but with C(X., Xz)® # 0. Then the
associated eigenvalyeis —1.

To see this we note that is a linear map, so, taking the derivative at the fixed point
(fr, fr), we obtain

CL(XL,XR) :pC(XL,XR) (315)
However, by standard results on functional differentiation, we have

CL(X1, Xp)(x) = (—a 2 fr(fr(ax)) + ot fr(fr(ax)) fr(ex)x) X (1)
+a ' Xr(fr(ex)) + ot fr(fr(ax) X g(ox)
—(—a 2 fr(frlex)) + o~ fr(fr(ax)) f1 (ax)x) X (1)
—a X (fr(ax)) — o fr(fi(ex) X (ox) (3.16)
= o " Xr(DC(fr, f1)(x)
+a X (D (fr(fr(@x)) frlex)x — fr(fr(ex)) f; (ax)x)
+a M (Xr(fr(ex)) — X (fr(ax)))
+a  (fr(fr(@x) X g(ax) — fr(fo(ex) Xy (ax)) (3.17)
where we have used the fixed point equations. Differentiadirtgnes with respect ta
and evaluating at = 0, we have, from the fact that\”’(0) and f,”(0) are zero for
p=12...,d—1,andC(X;, Xz)(0) =0,
(CL(XL, Xg)(0) = " Xg(DC(fr, f1)”(0) + da’ *Xg (1) fr(DC(fr. f1)(0)
+a? X (DC(fr, ) DO + oL fr(DC (X, X1) @ (0)
+a R 0 XR(0) — £7(0)X,(0)) (3.18)
= —a R C(XL, X)) (0) (3.19)
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where we have used the fact th@tf;, fz)(0) = 0 at the fixed poin{( f;, fz). Now, as
seen above (3.13);(1) = o', so we have

pC(Xr, Xg)V(0) = —C (X1, X)(0) (3.20)

giving p = —1 as required.
This eigenvalue-1 suggests that there is a line of period-two pointg'ahrough the
fixed point(f;, fr) parametrized byx.

4. Numerical results

We now provide supporting numerical evidence for the existence and universality of
the scaling. Similar calculations appear in [1] and [15]. However, there is an
important difference between the scaling constants one calculates directly and those in
our renormalization analysis.

Associated with the fixed point of Feigenbaum’s renormalization operator (1.2) are two
important scaling constants. The first of theseis merely f (1). The seconds, is the size
of the largest eigenvalue of the linearization of the operator at the fixed point. In the case
of quadratic critical points we hawe = —0.39953528.. and§ = 4.6692016... (For
very precise calculations of these constants see [2].)

The renormalization picture shows us tldais the (asymptotic) rate of convergence of
parameter values at successive period-doubled superstable periodic orbits. It also tells us
that o is the limit of the ratio of successive distances between the critical point and its
partner point halfway round these orbits.

In light of the previous section, we take our map (1.1) andiget ui, andi, = A
fixing the ratiopx = A1/A2 and the degred. We then vary the single parameterand
observe period doubling. Our map is now

(4.1)

1— pilx|? x<0
falx) = -

1—alx|? x > 0.

We define),, to be the parameter value where there is a superstable periodic orbit (i.e.
an orbit containing the point 0) of period,2and calculate the ratios

A n—1) — A n—2
I @2)
(n) — Mn-1)
and
20
Ap) = L (43)

22,0
As in [1], we find that the limiting behaviour is period two, and we consequently define

at = lim o(2n) and a” = lim o(2n+1)- (4.4)
n—00

n—o0o

In table 1 we tabulate these constants for several valugs infthe case of degree 2.
The numbers quoted are accurate to five digits.

Note thate = oy, SO that the results at parametewill be identical to those at /I
with the roles ofa™ anda™ reversed The same remarks hold for the corresponding limits
st ands™.

Figure 1 shows/ata— and+/§+5~ against logu, the logarithmic scale being chosen
to exhibit the symmetry with respect {o.
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Table 1. Results ford = 2.
m —a —a~ ata~ —a —a 8t 8~ NI

05 0715759 0.218862 0.395794 0.581439 0.269423 8.342155 2.723239 4.766 307
0.6 0.614996 0.256911 0.397491 0.527784 0.299363 7.136768 3.124109 4.721868
0.7 0540480 0.293868 0.398535 0.485794 0.326949 6.265819 3.517770 4.694860
0.8 0.482941 0329885 0.399143 0.451780 0.352638 5.605785 3.905832 4.679237
0.9 0437055 0.365077 0.399448 0.423509 0.376753 5.087494 4.289389 4.671428
1.0 0.399535 0.399535 0.399535 0.399535 0.399535 4.669206 4.669200 4.669 203
1.1 0.368238 0.433337 0.399464 0.378876 0.421170 4.324062 5.045843 4.671032
1.2 0.341702 0.466544 0.399273 0.360838 0.441802 4.034146 5.419750 4.675902
1.3 0318896 0.499209 0.398993 0.344915 0.461550 3.786959 5.791255 4.683081
1.4 0.299068 0.531376 0.398645 0.330727 0.480510 3.573526 6.160631 4.692033
15 0.281660 0.563083 0.398244 0.317984 0.498761 3.387243 6.528093 4.702365

0.4 -0.2 0.2 0.4 1logw

0.4 0.2 0.2 0.4 logw

Figure 1. Results ford = 2. (@) vata—, (b) véts~.

As a check on the universality of these numbers we have also considered a different
‘asymmetric quadratic’ map. The map used was a simple variation on the logistic map of
the interval:

2 3 1
D1X + pox© + pax 0<x<3

fx) = ) . 2 (4.5)
AX — Ax s<x<1

2
with p1 = 3—w)A/2, p» = (2u —3)A, and p3 = 2(1 — u)A. The modulusu has identical
meaning as above. The results obtained were identical.

It is an important interesting obversation that although and o~ are universal they
arenot the (universal) quantities and&@ encountered in previous sections.
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In facta™ = @A anda™ = @/A where

A= lim Z]k__[l<‘ii>(l)j (4.6)

j=2 \Yj

and wherey; anda; are respectively the values of the scaling parametensda at the inter-
sections of the 2superstable manifolds with the unstable manifolds of the period-two points
(fL. fr) and(f., fx). To calculatex and@ one must calculate the ratigﬁ';o) (0)/f,\2(:;”(0)
instead of the ratios in (4.3), wherg,, is the parameter value at the accumulation of
period-doubling. Table 1 also tabulates the valuea @inda for comparison.

This result differs from the standard Feigenbaum case (1) wherea™ = o~ = o = a.
In general all we can deduce is that the produtt:~ is equal toa@. This observation
indicates that care must be taken in interpreting the results of numerical calculations even
when the results are universal.

5. Conclusion

In this paper we have shown that there is good numerical and theoretical evidence that
suggests that the scaling behaviour for unimodal maps with asymmetric critical points of
the same degree is governed by period-two points of the renormalization opErator

We therefore conjecture that for each<0 d < oo and each O< u < oo there
exists a period-two paiff;., fz) of T such thatf; and fz are analytic functions ofx|?:
Jox) = FL(x|Y), fr(x) = Fr(lx|*), with FL(x) = Fr(ux), and F; (0)/ Fz(0) = .

It is likely that the Herglotz function approach of Epstein [8] can be adapted to prove
that such a pair exists.
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