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Abstract. We extend the renormalization analysis for period doubling in unimodal maps to the
case of asymmetric critical points. Universal scaling phenomena are governed by period-two
points of a renormalization operator.

1. Introduction

We are interested in exploring the universality classes of the period-doubling phenomenon
as first expounded by Feigenbaum [9, 10] (see also [5]). The universality of the remarkable
scaling phenomena observed in unimodal maps of the interval are explained in terms
of a fixed point of the operatorf (x) 7→ α−1f (f (αx)), where α = f (1). Following
Feigenbaum’s initial discoveries, a computer-assisted proof of the existence of the fixed
point was given by Lanford [13], and since then various proofs of both existence and
properties of the fixed point have been given [3, 4, 8, 7].

There has been much numerical and analytic work on how the scaling phenomena
depend on the degree of the critical point. For a review of results see [16] and references
therein. In particular the (computer-assisted) rigorous results of Eckmann and Wittwer
[7] for the large-degree limit are noteworthy. The degree is seen to be a universality
class parameter, by which we mean that different degrees correspond to different universal
scalings.

In this paper we study unimodal maps of the interval possessing degreed critical points,
but with differing left- and right-hand limits of thedth derivative. The prototype map we
have in mind is

f (x) =
{
fL(x) = 1− λ1|x|d x 6 0

fR(x) = 1− λ2|x|d x > 0
(1.1)

with d > 1. The subscriptsL andR stand for ‘left’ and ‘right’, andλ1, λ2 > 0. Early
studies of period doubling in maps of this form were conducted by Arneodoet al [1] (see
also [6, 15]). As observed in [1], the ratioµ, of the coefficientsλ1 and λ2 is another
universality class parameter.

Feigenbaum’s renormalization operator is

TF : f 7→ f̃ (1.2)
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defined by

f̃ (x) = α−1ff (αx) (1.3)

with

α = f (1) < 0. (1.4)

The natural generalization of this operator to the type of map we consider is the map on
pairs of functions.

T : (fL, fR) 7→ (f̃L, f̃R) (1.5)

defined by

f̃L(x) = α−1fRfR(αx) (1.6a)

f̃R(x) = α−1fRfL(αx) (1.6b)

with

α = fR(1) < 0. (1.7)

The analysis of section 2 below shows that it is natural to look for fixed points of thesecond
iterate ofT . We see in section 3 that indeed the parameterµ governs the universal scaling
features. We expect there to be a line of period-two points parametrized byµ through the
Feigenbaum fixed point, each point on the line corresponding to a universality class with
its own universal constants. In section 4 we present numerical calculations of the relevant
scaling exponents which support this conclusion.

2. Mixed degree maps

It is illustrative to consider not just the situation in which the maps join up with different
left and rightdth derivatives at the critical point as in equation (1.1), but one where the
degree of the critical point may be different on the left- and right-hand sides. The prototype
would now be

f (x) =
{
fL(x) = 1− λ1|x|d1 x 6 0

fR(x) = 1− λ2|x|d2 x > 0
(2.1)

with d1, d2 > 1. For simplicity of the expressions we have assumed in what follows that
the degrees are even, but this is not essential.

We consider the formal effect of the renormalization operatorT defined by (1.5) on the
more general map with

fL(x) = 1+
∞∑
i=1

aix
id1 (2.2a)

fR(x) = 1+
∞∑
i=1

bix
id2 (2.2b)

in which a1, b1 < 0. Our aim is to find relations between the coefficients and scaling factors
that are necessary forT to have fixed and period-two points.

We have

f̃L(x) = α−1

(
1+

∞∑
i=1

bi

(
1+

∞∑
j=1

bjα
jd2xjd2

)id2
)

(2.3a)

f̃R(x) = α−1

(
1+

∞∑
i=1

bi

(
1+

∞∑
j=1

ajα
jd1xjd1

)id2
)
. (2.3b)
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We now seek to write these in the form

f̃L(x) = 1+
∞∑
`=1

ã`x
`d2 (2.4a)

f̃R(x) = 1+
∞∑
`=1

b̃`x
`d1. (2.4b)

Note that the degrees swop from the left- to right-hand side and vice versa. This leads us
to expect that the second iterateT 2 of the renormalization operator will govern any scaling
behaviour.

Let us considerf̃R first. We have

f̃R(x) = α−1+ α−1
∞∑
i=1

bi

id2∑
k=0

(
id2

k

)( ∞∑
j=1

ajα
jd1xjd1

)k
(2.5)

= α−1+ α−1
∞∑
k=0

∞∑′

i=
[
k+d2−1
d2

] bi
(
id2

k

)( ∞∑
j=1

ajα
jd1xjd1

)k
(2.6)

on swopping the first two summations, where6′ means that whenk = 0 there is noi = 0
term. This is

f̃R(x) = α−1+ α−1
∞∑
k=0

( ∞∑
j=1

ajα
jd1xjd1

)k ∞∑′

i=
[
k+d2−1
d2

] bi
(
id2

k

)
(2.7)

= α−1+ α−1(fR(1)− 1)+ α−1
∞∑
k=1

1

k!

( ∞∑
j=1

ajα
jd1xjd1

)k
f
(k)
R (1) (2.8)

where we have used the fact that thekth derivative offR, f (k)R , satisfies

1

k!
f
(k)
R (1) =

∞∑
i=
[
k+d2−1
d2

]
(
id2

k

)
bi. (2.9)

Continuing (recalling thatα = fR(1)), we thus have

f̃R(x) = 1+ α−1
∞∑
k=1

1

k!
f
(k)
R (1)

( ∞∑
j=1

ajα
jd1xjd1

)k
(2.10)

= 1+ α−1
∞∑
k=1

1

k!
f
(k)
R (1)

∞∑
`=k

(∑
|i|=`

ai1ai2 . . . aik

)
α`d1x`d1 (2.11)

where the summation
∑
|i|=` ai1ai2 . . . aik means the sum of the product ofk terms with

indices adding tò . We use the notation|i| = i1+ i2+ · · · + ik.
We now swop order of summation again to obtain

f̃R(x) = 1+ α−1
∞∑
`=1

α`d1x`d1
∑̀
k=1

1

k!
f
(k)
R (1)

(∑
|i|=`

ai1ai2 . . . aik

)
(2.12)

which is our desired expression (2.4b). For instance, the coefficient ofxd1 is

b̃1 = α−1αd1

1∑
k=1

1

k!
f
(k)
R (1)

(∑
|i|=1

ai1ai2 . . . aik

)
(2.13)

= αd1−1f ′R(1)a1 (2.14)
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whilst

b̃2 = α2d1−1(f ′R(1)a2+ 1
2f
′′
R(1)a

2
1). (2.15)

Note that the expression for eachb̃` involves everybi (but only a finite number of theai).
In general we have

b̃` = α`d1−1
∑̀
k=1

1

k!
f
(k)
R (1)

(∑
|i|=`

ai1ai2 . . . aik

)
. (2.16)

The corresponding expression (2.4a) for f̃L(x) is

f̃L(x) = 1+ α−1
∞∑
`=1

α`d2x`d2
∑̀
k=1

1

k!
f
(k)
R (1)

(∑
|i|=`

bi1bi2 . . . bik

)
. (2.17)

We have

ã` = α`d2−1
∑̀
k=1

1

k!
f
(k)
R (1)

(∑
|i|=`

bi1bi2 . . . bik

)
. (2.18)

In particular we have

ã1 = αd2−1f ′R(1)b1. (2.19)

For there to be a fixed point ofT we clearly needd1 = d2. With d1 = d2, using
equations (2.14) and (2.19), the conditionsã1 = a1 and b̃1 = b1 imply that a1/b1 = b1/a1

and soa1 = b1 since they are of the same sign. By induction it follows thata` = b` for
all `. This is a consequence of equations (2.16) and (2.18).

We conclude that any fixed points ofT must be symmetric, i.e. havefL = fR.
We now consider period-two points ofT . A second application ofT gives a new pair

(
˜̃
fL,
˜̃
fR) given by

˜̃
fL(x) = α̃−1f̃Rf̃R(α̃x) (2.20a)
˜̃
fR(x) = α̃−1f̃Rf̃L(α̃x) (2.20b)

where

α̃ = f̃R(1). (2.21)

We write these in the form

˜̃
fL(x) = 1+

∞∑
j=1

˜̃ajxjd1 (2.22a)

˜̃
fR(x) = 1+

∞∑
j=1

˜̃
bjx

jd2 (2.22b)

and we have

˜̃aj = α̃jd1−1
j∑
k=1

1

k!
f̃
(k)
R (1)

(∑
|i|=j

b̃i1b̃i2 . . . b̃ik

)
(2.23a)

˜̃
bj (x) = α̃jd2−1

j∑
k=1

1

k!
f̃
(k)
R (1)

(∑
|i|=j

ãi1ãi2 . . . ãik

)
(2.23b)
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where

α̃ = f̃R(1) = 1+
∞∑
i=1

b̃i (2.24)

and

1

k!
f̃
(k)
R (1) =

∞∑
i=
[
k+d1−1
d1

]
(
id1

k

)
b̃i . (2.25)

In order to study the period-two problem forT we impose the conditions̃̃bj = bj and
˜̃aj = aj . The first term (j = 1) gives

˜̃a1 = α̃d1−1f̃ ′R(1)b̃1 (2.26a)

˜̃
b1 = α̃d2−1f̃ ′R(1)ã1 (2.26b)

where we have, by (2.14) and (2.19),

ã1 = αd2−1f ′R(1)b1 (2.27a)

b̃1 = αd1−1f ′R(1)a1. (2.27b)

Thus the equations

˜̃a1 = α̃d1−1f̃ ′R(1)b̃1 = a1 (2.28a)

˜̃
b1 = α̃d2−1f̃ ′R(1)ã1 = b1 (2.28b)

become

α̃d1−1f̃ ′R(1)α
d1−1f ′R(1)a1 = a1 (2.29a)

α̃d2−1f̃ ′R(1)α
d2−1f ′R(1)b1 = b1 (2.29b)

which give

(α̃α)d1−1f̃ ′R(1)f
′
R(1) = 1 (2.30a)

(α̃α)d2−1f̃ ′R(1)f
′
R(1) = 1. (2.30b)

Whend1 6= d2 we deduce from these last two equations that

α̃α = 1. (2.31)

We now consider briefly the question of whether period-two points can exist ford1 6= d2.
We shall return to the cased1 = d2 in the next section.

The period-two equations can be written as

fL(x) = (αα̃)−1fRfLfRfL(αα̃x) (2.32)

fR(x) = (αα̃)−1fRfLfRfR(αα̃x) (2.33)

and in particular, sinced1 6= d2, we have by (2.31)

fR(x) = fRfLfRfR(x) (2.34)

which can only be satisfied iffRfLfR is the identity function forx close to 1. Now for
unimodal maps 0 is the only point that maps to 1, and sofLfR(1) = 0. Differentiating
at 1 gives(fRfLfR)′(1) = 0 which contradictsfRfLfR being the identity function. Thus
no analytic period-two points can exist.

This leaves open the question of what determines the metric bifurcation structure of
families of unimodal maps withd1 6= d2. One can draw bifurcation diagrams for our
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maps (2.1) whend1 6= d2, and topologically all is as in the standard Feigenbaum case.
However, as indicated by the numerical results of Jensen and Ma [11], there does not seem
to be geometric scaling of Feigenbaum type. The fact that there are no fixed or period-two
points ofT supports these findings.

3. An invariant modulus for the d1 = d2 case

Equations (2.14) and (2.19) show us that

f ′R(1) =
ã1

b1αd2−1
= b̃1

a1αd1−1
(3.1)

and hence

αd1a1ã1 = αd2b1b̃1. (3.2)

Thus, whend1 = d2 = d we deduce that

a1ã1 = b1b̃1 (3.3)

or equivalently

ã1

b̃1

= b1

a1
. (3.4)

We thus have an ‘invariant modulus’

µ = a1

b1
(3.5)

that inverts under one renormalization and then reverts to its original value on a second
renormalization. This is similar to the invariant modulus introduced in [14] (see also [12]).

If we now consider the (second iterate) fixed point equation we find that the next terms
satisfy

a2

b2
=
(
a1

b1

)2

= µ2 (3.6)

and

f̃ ′′R(1) =
2α

a2
1(α̃α)

2d−1f ′R(1)2

(
a2(1− (α̃α)d)− a

2
1(α̃α)

df ′′R(1)
2f ′R(1)

)
. (3.7)

Much more is true however. Using (2.16), (2.18) and (2.23), a straightforward induction
argument shows that

a`

b`
= µ` (3.8)

for all `. We thus have

fL(x) = 1+
∞∑
i=1

biµ
ixid = 1+

∞∑
i=1

bi(µ
1/dx)id = fR(µ1/dx) (3.9)

fR(x) = 1+
∞∑
i=1

bix
id . (3.10)

We see that the fixed point pair can be expressed solely in terms of the single functionfR
and the invariant modulusµ. Note that whenµ = 1 we havefL = fR as expected.
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It is clear from the preceding arguments that there is a simple symmetry between the two
values of the modulusµ and 1/µ as far as the scaling constantsα andα̃ are concerned—they
are interchanged. Their product is consequently the same for parametersµ and 1/µ.

In the standard degreed Feigenbaum situation (1.2), with corresponding fixed point
equation

f (x) = α−1ff (αx) (3.11)

whereα = f (1), on proposing the series solution

f (x) = 1+
∞∑
i=1

aix
id (3.12)

we deduce that

f ′(1) = α1−d (3.13)

and

f ′′(1) = 2a2(1− αd)
a2

1α
2d−1

. (3.14)

Our expressions above ((3.1), (3.7)) simplify to these whenµ = 1.
As a further indication of the existence of period-two points ofT we consider the

linearization of the operatorT at the Feigenbaum fixed point.
Let (fL, fR) be the degreed fixed point ofT , and letL denote the derivative dT (fL, fR)

at the fixed point. LetC denote the linear mapC(gL, gR) = gL − gR and (XL,XR) be
an eigenvector ofL satisfyingC(XL,XR)(0) = 0, but withC(XL,XR)(d) 6= 0. Then the
associated eigenvalueρ is −1.

To see this we note thatC is a linear map, so, taking the derivative at the fixed point
(fL, fR), we obtain

CL(XL,XR) = ρC(XL,XR). (3.15)

However, by standard results on functional differentiation, we have

CL(XL,XR)(x) = (−α−2fR(fR(αx))+ α−1f ′R(fR(αx))f
′
R(αx)x)XR(1)

+α−1XR(fR(αx))+ α−1f ′R(fR(αx))XR(αx)
−(−α−2fR(fL(αx))+ α−1f ′R(fL(αx))f

′
L(αx)x)XR(1)

−α−1XR(fL(αx))− α−1f ′R(fL(αx))XL(αx) (3.16)

= α−1XR(1)C(fR, fL)(x)

+α−1XR(1)(f
′
R(fR(αx))f

′
R(αx)x − f ′R(fL(αx))f ′L(αx)x)

+α−1(XR(fR(αx))−XR(fL(αx)))
+α−1(f ′R(fR(αx))XR(αx)− f ′R(fL(αx))XL(αx)) (3.17)

where we have used the fixed point equations. Differentiatingd times with respect tox
and evaluating atx = 0, we have, from the fact thatf (p)R (0) and f (p)L (0) are zero for
p = 1, 2, . . . , d − 1, andC(XL,XR)(0) = 0,

(CL(XL,XR))
(d)(0) = α−1XR(1)C(fR, fL)

(d)(0)+ dαd−2XR(1)f
′
R(1)C(fR, fL)

(d)(0)

+αd−1X′R(1)C(fR, fL)
(d)(0)+ αd−1f ′R(1)C(XR,XL)

(d)(0)

+αd−1f ′′R(1)(f
(d)
R (0)XR(0)− f (d)L (0)XL(0)) (3.18)

= − αd−1f ′R(1)C(XL,XR)
(d)(0) (3.19)
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where we have used the fact thatC(fL, fR)(d)(0) = 0 at the fixed point(fL, fR). Now, as
seen above (3.13),f ′R(1) = α1−d , so we have

ρC(XL,XR)
(d)(0) = −C(XL,XR)(d)(0) (3.20)

giving ρ = −1 as required.
This eigenvalue−1 suggests that there is a line of period-two points ofT through the

fixed point(fL, fR) parametrized byµ.

4. Numerical results

We now provide supporting numerical evidence for the existence and universality of
the scaling. Similar calculations appear in [1] and [15]. However, there is an
important difference between the scaling constants one calculates directly and those in
our renormalization analysis.

Associated with the fixed point of Feigenbaum’s renormalization operator (1.2) are two
important scaling constants. The first of these,α, is merelyf (1). The second,δ, is the size
of the largest eigenvalue of the linearization of the operator at the fixed point. In the case
of quadratic critical points we haveα = −0.399 535 28. . . and δ = 4.669 2016. . . . (For
very precise calculations of these constants see [2].)

The renormalization picture shows us thatδ is the (asymptotic) rate of convergence of
parameter values at successive period-doubled superstable periodic orbits. It also tells us
that α is the limit of the ratio of successive distances between the critical point and its
partner point halfway round these orbits.

In light of the previous section, we take our map (1.1) and setλ1 = µλ2 andλ2 = λ
fixing the ratioµ = λ1/λ2 and the degreed. We then vary the single parameterλ and
observe period doubling. Our map is now

fλ(x) =
{

1− µλ|x|d x 6 0

1− λ|x|d x > 0.
(4.1)

We defineλ(n) to be the parameter value where there is a superstable periodic orbit (i.e.
an orbit containing the point 0) of period 2n, and calculate the ratios

δ(n) = λ(n−1) − λ(n−2)

λ(n) − λ(n−1)
(4.2)

and

α(n) =
f 2n−1

λ(n)
(0)

f 2n−2

λ(n−1)
(0)
. (4.3)

As in [1], we find that the limiting behaviour is period two, and we consequently define

α+ = lim
n→∞α(2n) and α− = lim

n→∞α(2n+1). (4.4)

In table 1 we tabulate these constants for several values ofµ in the case of degree 2.
The numbers quoted are accurate to five digits.

Note thatα+µ = α−1/µ, so that the results at parameterµ will be identical to those at 1/µ
with the roles ofα+ andα− reversed The same remarks hold for the corresponding limits
δ+ andδ−.

Figure 1 shows
√
α+α− and

√
δ+δ− against logµ, the logarithmic scale being chosen

to exhibit the symmetry with respect toµ.
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Table 1. Results ford = 2.

µ −α+ −α− √
α+α− −α −α̃ δ+ δ−

√
δ+δ−

0.5 0.715 759 0.218 862 0.395 794 0.581 439 0.269 423 8.342 155 2.723 239 4.766 307
0.6 0.614 996 0.256 911 0.397 491 0.527 784 0.299 363 7.136 768 3.124 109 4.721 868
0.7 0.540 480 0.293 868 0.398 535 0.485 794 0.326 949 6.265 819 3.517 770 4.694 860
0.8 0.482 941 0.329 885 0.399 143 0.451 780 0.352 638 5.605 785 3.905 832 4.679 237
0.9 0.437 055 0.365 077 0.399 448 0.423 509 0.376 753 5.087 494 4.289 389 4.671 428
1.0 0.399 535 0.399 535 0.399 535 0.399 535 0.399 535 4.669 206 4.669 200 4.669 203
1.1 0.368 238 0.433 337 0.399 464 0.378 876 0.421 170 4.324 062 5.045 843 4.671 032
1.2 0.341 702 0.466 544 0.399 273 0.360 838 0.441 802 4.034 146 5.419 750 4.675 902
1.3 0.318 896 0.499 209 0.398 993 0.344 915 0.461 550 3.786 959 5.791 255 4.683 081
1.4 0.299 068 0.531 376 0.398 645 0.330 727 0.480 510 3.573 526 6.160 631 4.692 033
1.5 0.281 660 0.563 083 0.398 244 0.317 984 0.498 761 3.387 243 6.528 093 4.702 365

Figure 1. Results ford = 2. (a)
√
α+α−, (b)

√
δ+δ−.

As a check on the universality of these numbers we have also considered a different
‘asymmetric quadratic’ map. The map used was a simple variation on the logistic map of
the interval:

f (x) =
{
p1x + p2x

2+ p3x
3 06 x 6 1

2

λx − λx2 1
2 6 x 6 1

(4.5)

with p1 = (3−µ)λ/2, p2 = (2µ− 3)λ, andp3 = 2(1−µ)λ. The modulusµ has identical
meaning as above. The results obtained were identical.

It is an important interesting obversation that althoughα+ andα− are universal they
arenot the (universal) quantitiesα and α̃ encountered in previous sections.
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In fact α+ = αA andα− = α̃/A where

A = lim
k→∞

2k−1∏
j=2

(
αj

α̃j

)(−1)j

(4.6)

and whereαj andα̃j are respectively the values of the scaling parametersα andα̃ at the inter-
sections of the 2j -superstable manifolds with the unstable manifolds of the period-two points
(fL, fR) and(f̃L, f̃R). To calculateα andα̃ one must calculate the ratiosf 2n

λ(∞) (0)/f
2(n−1)

λ(∞) (0)
instead of the ratios in (4.3), whereλ(∞) is the parameter value at the accumulation of
period-doubling. Table 1 also tabulates the values ofα and α̃ for comparison.

This result differs from the standard Feigenbaum case (µ = 1) whereα+ = α− = α = α̃.
In general all we can deduce is that the productα+α− is equal toαα̃. This observation
indicates that care must be taken in interpreting the results of numerical calculations even
when the results are universal.

5. Conclusion

In this paper we have shown that there is good numerical and theoretical evidence that
suggests that the scaling behaviour for unimodal maps with asymmetric critical points of
the same degree is governed by period-two points of the renormalization operatorT .

We therefore conjecture that for each 0< d < ∞ and each 0< µ < ∞ there
exists a period-two pair(fL, fR) of T such thatfL andfR are analytic functions of|x|d :
fL(x) = FL(|x|d), fR(x) = FR(|x|d), with FL(x) = FR(µx), andF ′L(0)/F

′
R(0) = µ.

It is likely that the Herglotz function approach of Epstein [8] can be adapted to prove
that such a pair exists.
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